366 research outputs found

    Viscous modes within the compressible boundary-layer flow due to a broad rotating cone

    Get PDF
    Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.We investigate the effects of compressibility and wall cooling on the stationary, viscous (Type II) instability mode within the 3D boundary layer over rotating cones with half-angle greater than 40∘ 40∘ . The stationary mode is characterised by zero shear stress at the wall and a triple-deck solution is presented in the isothermal case. Asymptotic solutions are obtained which describe the structure of the wavenumber and the orientation of this mode as a function of local Mach number. It is found that a stationary mode is possible only over a finite range of local Mach number. Our conclusions are entirely consistent with the results of Seddougui 1990 , A nonlinear investigation of the stability models of instability of the trhee-dimensional Compresible boundary layer due to a rotating disc Q. J. Mech. Appl. Math. , 43, pt. 4. It is suggested that wall cooling has a significant stabilising effect, while reducing the half-angle is marginally destabilising. Solutions are presented for air

    Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1

    Get PDF
    In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. IceCube began releasing alerts for single high-energy (E>60E > 60 TeV) neutrino detections with sky localisation regions of order 1 deg radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for any optical transients that may be related to the neutrinos. Typically 10-20 faint (m<22.5m < 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of \sim50 %), we found a SN PS16cgx, located at 10.0' from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at z = 0.2895. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak SiII absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5σ\sigma limiting magnitude of m22m \sim 22 mag, between 1 day and 25 days after detection.Comment: 20 pages, 6 figures, accepted to A&

    Book Reviews

    Get PDF
    With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses 6 years of IceCube data focusing on muon neutrino ‘track’ events from the Northern Hemisphere, while the second analysis uses 2 years of ‘cascade’ events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: we obtain the strongest constraint to date, excluding lifetimes shorter than 102810^{28} s at 90% CL for dark matter masses above 10 TeV

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data

    Get PDF
    Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere.Comment: 19 pages, 17 figures, 2 table

    A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data

    Get PDF
    We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E2E^{-2} energy spectrum assumed, which is 0.0021 GeV cm2^{-2} per burst for emission timescales up to \textasciitilde102^2 seconds from the northern hemisphere stacking search.Comment: 15 pages, 9 figure

    Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes

    Get PDF
    [EN] The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas and radiation ¿elds. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRAg model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No signi¿cant excess is found. As a consequence, the limits presented in this Letter start constraining the model parameter space for Galactic cosmic-ray production and transport.Albert, A.; Andre, M.; Anghinolfi, M.; Ardid Ramírez, M.; Aubert, J-.; Aublin, J.; Avgitas, T.... (2018). Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. The Astrophysical Journal. 868(2):1-7. https://doi.org/10.3847/2041-8213/aaeecfS178682Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Anderson, T. (2017). Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube. The Astrophysical Journal, 846(2), 136. doi:10.3847/1538-4357/aa8508Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., … Archinger, M. (2015). A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE. The Astrophysical Journal, 809(1), 98. doi:10.1088/0004-637x/809/1/98Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., … Anderson, T. (2017). All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. The Astrophysical Journal, 835(2), 151. doi:10.3847/1538-4357/835/2/151Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Anderson, T. (2017). Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data. The Astrophysical Journal, 849(1), 67. doi:10.3847/1538-4357/aa8dfbAartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 12(03), P03012-P03012. doi:10.1088/1748-0221/12/03/p03012Ackermann, M., Ajello, M., Atwood, W. B., Baldini, L., Ballet, J., Barbiellini, G., … Berenji, B. (2012). FERMI-LAT OBSERVATIONS OF THE DIFFUSE γ-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM. The Astrophysical Journal, 750(1), 3. doi:10.1088/0004-637x/750/1/3Adrián-Martínez, S., Ageron, M., Aguilar, J. A., Samarai, I. A., Albert, A., André, M., … Ardid, M. (2012). The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 7(08), T08002-T08002. doi:10.1088/1748-0221/7/08/t08002Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103Ahn, H. S., Allison, P., Bagliesi, M. G., Beatty, J. J., Bigongiari, G., Childers, J. T., … Zinn, S. Y. (2010). DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA. The Astrophysical Journal, 714(1), L89-L93. doi:10.1088/2041-8205/714/1/l89Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2017). New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope. Physical Review D, 96(6). doi:10.1103/physrevd.96.062001Antoni, T., Apel, W. D., Badea, A. F., Bekk, K., Bercuci, A., Blümer, J., … Zabierowski, J. (2005). KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems. Astroparticle Physics, 24(1-2), 1-25. doi:10.1016/j.astropartphys.2005.04.001Apel, W. D., Arteaga-Velázquez, J. C., Bekk, K., Bertaina, M., Blümer, J., Bozdog, H., … Cossavella, F. (2013). KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays. Astroparticle Physics, 47, 54-66. doi:10.1016/j.astropartphys.2013.06.004Gaggero, D., Grasso, D., Marinelli, A., Taoso, M., & Urbano, A. (2017). Diffuse Cosmic Rays Shining in the Galactic Center: A Novel Interpretation of H.E.S.S. and Fermi-LAT γ -Ray Data. Physical Review Letters, 119(3). doi:10.1103/physrevlett.119.031101Gaggero, D., Grasso, D., Marinelli, A., Urbano, A., & Valli, M. (2015). THE GAMMA-RAY AND NEUTRINO SKY: A CONSISTENT PICTURE OF FERMI -LAT, MILAGRO, AND ICECUBE RESULTS. The Astrophysical Journal, 815(2), L25. doi:10.1088/2041-8205/815/2/l25Gaggero, D., Urbano, A., Valli, M., & Ullio, P. (2015). Gamma-ray sky points to radial gradients in cosmic-ray transport. Physical Review D, 91(8). doi:10.1103/physrevd.91.083012Vladimirov, A. E., Digel, S. W., Jóhannesson, G., Michelson, P. F., Moskalenko, I. V., Nolan, P. L., … Strong, A. W. (2011). GALPROP WebRun: An internet-based service for calculating galactic cosmic ray propagation and associated photon emissions. Computer Physics Communications, 182(5), 1156-1161. doi:10.1016/j.cpc.2011.01.01

    Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube

    Get PDF
    After the identification of the gamma-ray blazar TXS 0506+056 as the first compelling IceCube neutrino source candidate, we perform a systematic analysis of all high-energy neutrino events satisfying the IceCube realtime trigger criteria. We find one additional known gamma-ray source, the blazar GB6 J1040+0617, in spatial coincidence with a neutrino in this sample. The chance probability of this coincidence is 30% after trial correction. For the first time, we present a systematic study of the gamma-ray flux, spectral and optical variability, and multi-wavelength behavior of GB6 J1040+0617 and compare it to TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the Fermi-LAT gamma-ray band, being in an active state around the arrival of IceCube-170922A, but in a low state during the archival IceCube neutrino flare in 2014/15. In both cases the spectral shape is statistically compatible (2σ\leq 2\sigma) with the average spectrum showing no indication of a significant relative increase of a high-energy component. While the association of GB6 J1040+0617 with the neutrino is consistent with background expectations, the source appears to be a plausible neutrino source candidate based on its energetics and multi-wavelength features, namely a bright optical flare and modestly increased gamma-ray activity. Finding one or two neutrinos originating from gamma-ray blazars in the given sample of high-energy neutrinos is consistent with previously derived limits of neutrino emission from gamma-ray blazars, indicating the sources of the majority of cosmic high-energy neutrinos remain unknown.Comment: 22 pages, 11 figures, 2 Table

    Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope

    Get PDF
    We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3+1 model, using eight years of data from the IceCube Neutrino Telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric νμ and ¯νμ events we construct confidence intervals in two analysis spaces: sin2(2θ24_{24}) vs Δm2¦41 under the conservative assumption θ34_{34}=0; and sin2^{2} (2θ24_{24}) vs sin2^{2} (2θ34_{34}) given sufficiently large Δm2¦41 that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p value of 8% in the first analysis space and 19% in the second
    corecore